05:30 -
FAQ
No comments
How to calculate peak data rate in LTE?
You may hear it many times that the peak data rate of LTE is about 300Mbps? How is the number calculated? What are the assumptions behind? Let's estimate it in a simple way. Assume 20 MHz channel bandwidth, normal CP, 4x4 MIMO.
- First, calculate the number of resource elements (RE) in a subframe with 20 MHz channel bandwidth: 12 subcarriers x 7 OFDMA symbols x 100 resource blocks x 2 slots= 16800 REs per subframe. Each RE can carry a modulation symbol.
- Second, assume 64 QAM modulation and no coding, one modulation symbol will carry 6 bits. The total bits in a subframe (1ms) over 20 MHz channel is 16800 modulation symbols x 6 bits / modulation symbol = 100800 bits. So the data rate is 100800 bits / 1 ms = 100.8 Mbps.
- Third, with 4x4 MIMO, the peak data rate goes up to 100.8 Mbps x 4 = 403 Mbps.
- Fourth, estimate about 25% overhead such as PDCCH, reference signal, sync signals, PBCH, and some coding. We get 403 Mbps x 0.75 = 302 Mbps.
Ok, it is done through estimation. Is there a way to calculate it more accurately? If this is what you look for, you need to check the 3GPP specs 36.213, table 7.1.7.1-1 and table 7.1.7.2.1-1. Table 7.1.7.1-1 shows the mapping between MCS (Modulation and Coding Scheme) index and TBS (Transport Block Size) index. Let's pick the highest MCS index 28 (64 QAM with the least coding), which is mapping to TBS index of 26. Table 7.1.7.2.1-1 shows the transport block size. It indicates the number of bits that can be transmitted in a subframe/TTI (Transmit Time Interval). For example, with 100 RBs and TBS index of 26, the TBS is 75376. Assume 4x4 MIMO, the peak data rate will be 75376 x 4 = 301.5 Mbps.
0 comments:
Post a Comment